Merry
Well-Known Member
Although I've known people with Multiple Sclerosis (including two first cousins), I had never heard that a large percentage eventually develop significant cognitive dysfunction.
http://neurosciencenews.com/myelin-multiple-sclerosis-cognition-3496/
The article includes an informative graphic that lists MS symptoms.
Most people associate MS with motor and sensory symptoms like muscle weakness, numbness or tingling in arms and legs, difficulty with coordination, walking, and balance, blurred vision, and slurred speech. However, up to 70 percent of people with MS will also go on to develop cognitive problems later in life, such as difficulty processing information, concentrating, finding the right word when speaking, and memory loss.
“This study identifies for the first time a new disease mechanism in MS which causes damage to neurons independent of the loss of white matter and demyelination that is the hallmark of the disease,” said the lead author, neurologist Matthew Bellizzi, M.D., Ph.D., with the Center for Neural Development and Disease at the University of Rochester Medical Center (URMC). “This damage represents another component of the disease and one that is not prevented by the current immunosuppressive drugs employed to treat MS.”
The URMC team conducted a series of experiments in mouse models of MS which showed that neurons in the hippocampus, an area of the brain not associated with motor control, were being damaged at the synapse — the point of connection where one neuron’s axon meets its neighbor and allows the two cells to communicate with each other through the transmission of chemical signals.
One of the culprits appears to be a cell in the central nervous system’s defenses called microglia. Microglia serve as the brain’s “first responders” and are activated to help fight infection or other assaults on the nervous system and clean up the debris from damaged cells.
One of the functions of microglia is to maintain the health of the synapse so that it can function normally to help the hippocampus with learning and memory. However, when the immune system is over-activated during MS, distress signals are sent throughout the brain causing the microglia to switch from their normal nurturing role and take up an aggressive pro-inflammatory response.
The microglia release a molecule called platelet-activating factor (PAF) that affects the excitatory signaling that neurons use to activate one another and encode new memories. High levels of PAF can lead to an over-activation of these signals that, like a power surge, destroys the receiving end of the synapse. This, in turn, causes more microglia and other immune cells to rush to the site of injury, triggering a chronic and self-perpetuating cycle of destruction.
http://neurosciencenews.com/myelin-multiple-sclerosis-cognition-3496/
The article includes an informative graphic that lists MS symptoms.
Last edited: