Who Me?
Well-Known Member
Pilot Study of Natural Killer Cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Multiple Sclerosis
Abstract
Patients with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and multiple sclerosis (MS) suffer from debilitating fatigue which is not alleviated by rest. In addition to the fatigue-related symptoms suffered by patients with CFS/ME and MS, dysfunction of the immune system and, in particular, reduced natural killer (NK) cell cytotoxic activity has also been reported in CFS/ME and MS. The purpose of this pilot study was to compare NK cellular mechanisms in patients with CFS/ME and MS to investigate potential dysfunctions in the NK cell activity pathway. Flow cytometry protocols assessed CD56(dim) CD16(+) and CD56(bright) CD16(+/-) NK cell expression of adhesion molecules, NK activating and inhibiting receptors, NK cell maturation and lytic proteins. All participants in this study were female and included 14 patients with CFS/ME, nine patients with MS and 19 non-fatigued controls. The patient groups and the non-fatigued controls were not taking any immunosuppressive or immune-enhancing medications. In the MS cohort, KIR2DL5 was significantly increased on CD56(bright) CD16(+/-) NK cells and expression of CD94 was significantly increased on CD56(dim) CD16(+) NK cells in comparison with the controls. Co-expression of CD57 and perforin was significantly increased on CD56(dim) CD16(+) NK cells from patients with CFS/ME compared to the MS and non-fatigued control participants. The results from this pilot study suggest that NK cells from patients with CFS/ME and MS may have undergone increased differentiation in response to external stimuli which may affect different mechanisms in the NK cell cytotoxic activity pathway.
http://www.ncbi.nlm.nih.gov/pubmed/26381393
Abstract
Patients with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and multiple sclerosis (MS) suffer from debilitating fatigue which is not alleviated by rest. In addition to the fatigue-related symptoms suffered by patients with CFS/ME and MS, dysfunction of the immune system and, in particular, reduced natural killer (NK) cell cytotoxic activity has also been reported in CFS/ME and MS. The purpose of this pilot study was to compare NK cellular mechanisms in patients with CFS/ME and MS to investigate potential dysfunctions in the NK cell activity pathway. Flow cytometry protocols assessed CD56(dim) CD16(+) and CD56(bright) CD16(+/-) NK cell expression of adhesion molecules, NK activating and inhibiting receptors, NK cell maturation and lytic proteins. All participants in this study were female and included 14 patients with CFS/ME, nine patients with MS and 19 non-fatigued controls. The patient groups and the non-fatigued controls were not taking any immunosuppressive or immune-enhancing medications. In the MS cohort, KIR2DL5 was significantly increased on CD56(bright) CD16(+/-) NK cells and expression of CD94 was significantly increased on CD56(dim) CD16(+) NK cells in comparison with the controls. Co-expression of CD57 and perforin was significantly increased on CD56(dim) CD16(+) NK cells from patients with CFS/ME compared to the MS and non-fatigued control participants. The results from this pilot study suggest that NK cells from patients with CFS/ME and MS may have undergone increased differentiation in response to external stimuli which may affect different mechanisms in the NK cell cytotoxic activity pathway.
http://www.ncbi.nlm.nih.gov/pubmed/26381393